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This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with
homogeneous, isotropic turbulence. An analytic formulation for the spectrum of acoustic power of
a two-dimensional flat-plate is derived. The main finding of this paper is that the acoustic power
spectrum from the cascade of flat airfoils may be split into two distinct frequency regions of low
frequency and high frequency, separated by a critical frequency. Below this frequency, cascade
effects due to the interaction between neighboring airfoils are shown to be important. At frequencies
above the critical frequency, cascade effects are shown to be relatively weak. In this frequency
range, acoustic power is shown to be approximately proportional to the number of blades. Based on
this finding at high frequencies, an approximate expression is derived for the power spectrum that
is valid above the critical frequency and which is in excellent agreement with the exact expression
for the broadband power spectrum. The formulation is used to perform a parametric study on the
effects on the power spectrum of the blade number, stagger angle, gap-chord ratio, and Mach
number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator
interaction. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2139626�
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I. INTRODUCTION

This paper deals with the broadband noise due to the
interaction between turbulence and a cascade of flat-plate
airfoils. This problem is relevant to broadband noise genera-
tion in an aero-engine due to interaction of the turbulent
rotor wake with the stator vanes, and to the interaction of
ingested turbulence with the rotor blades.

The acoustic radiation from a uniformly spaced cascade
of blades due to an impinging turbulent gust may be pre-
dicted by Fourier synthesis of the response to a harmonic
vortical gust. A number of different approaches have been
developed to address this problem. Kaji and Okazaki1,2 have
considered sound propagation upstream through a two-
dimensional cascade of flat-plate airfoils by solving for the
distribution of dipole source strength on the blade surfaces.
Based on a similar approach, Smith3 has developed the first
numerical solution for predicting the unsteady blade loading
and the acoustic field upstream or downstream of a two-
dimensional cascade of flat-plate airfoils perfectly aligned
with a uniform mean flow. Further details are presented in
Whitehead.4 Mani and Hovray5 have developed other meth-
ods for solving this problem using an approximate solution
based on the Wiener Hopf method. Koch6 extended the
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Wiener Hopf analysis of Mani and Hovray5 to blades with
finite chord and gave the transmission and reflection coeffi-
cient for both upstream and downstream propagating acous-
tic waves. Peake7 has extended Koch’s analysis to give the
unsteady loading on the blades caused by an incoming vor-
tical gust, and has also developed analytic tools8,9 to enable
the rapid computation of the function required for the Wiener
Hopf solution. 5,6 The effects of blade sweep and oblique
gust arrival angles were investigated by Glegg,10 who has
developed an analytic expression for the unsteady blade
loading, acoustic mode amplitude, and sound power output
of a three-dimensional rectilinear cascade of blades with fi-
nite chord excited by a three-dimensional vortical gust.

Hanson and Horan11 have investigated the broadband
noise due to turbulence interacting with a flat-plate cascade,
using the cascade response theory due to Glegg.10

Hanson12,13 has also extended the theory in Ref. 11 to in-
clude the effects of lean and sweep on the broadband noise
spectrum. Evers and Peake14 have recently investigated the
effects of small, but nonzero, camber and thickness on the
upstream acoustic power.

In the present study, the theory of broadband noise from
a cascade of two-dimensional flat airfoils subject to homoge-
neous frozen turbulent gust is investigated in detail. Empha-
sis is given to the physical interpretation of the acoustic field

above a critical frequency, where it is shown that the sound
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power is proportional to the blade number suggesting that for
turbulent gusts, interaction effects between the blades is
weak.

The main contributions of this paper are threefold. First,
we define the concept of a critical frequency which divides
the acoustic response of the flat-airfoil cascade to impinging
turbulence into two distinct frequency regions. Below the
critical frequency, the effects of interaction between the
neighboring airfoils are significant and only some of the
wave number components of turbulence contribute to the
acoustic field. Above the critical frequency, all the wave
number components of turbulence contribute to the acoustic
field and the interaction between the adjacent airfoils is
weak, so that the power from each blade is additive. Second,
a simple expression is derived for the broadband power spec-
trum that is rapid to compute and is in excellent agreement
with the exact calculation above the critical frequency. Fi-
nally, a parametric study is presented that includes a com-
parison between experimental data and predictions obtained
using the exact and approximate expressions. This shows
that overall predictions closely match those of Hanson11,13

obtained using a three-dimensional theory, thereby suggest-
ing that the contribution from oblique gusts to the radiated
sound is comparatively weak.

II. FORMULATION OF ACOUSTIC FIELD

A. Basic equations

The cascade geometry and coordinate system investi-
gated in this paper is shown in Fig. 1. A two-dimensional
cascade of flat-plate airfoils with stagger angle � is assumed
to be located in a two-dimensional uniform flow moving in
the direction parallel to the chord, i.e., with zero angle of
incidence. Turbulence is assumed to be convected with the
mean flow W as a “frozen gust pattern.” In Fig. 1, �x1 ,x2� is
the unwrapped duct coordinate system, and �y1 ,y2� is the
cascade-fixed coordinate system. Following Smith, Ref. 3,
nontrivial, single-frequency solutions of the linearized Euler

FIG. 1. The cascade geometry and the convected turbulence gust.
equations of the form,
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�u1

u2

p
� = �ū1

ū2

p̄
�ei��t+�x1+�x2�, �1�

are obtained for

�� + U1� + U2��2 − a2��2 + �2� = 0, �2�

or

�� + U1� + U2�� = 0, �3�

where ū and p̄ are complex amplitudes, and � and � are the
wave numbers of the perturbation quantities in the axial and
gap-wise directions, respectively, and Uj is the mean veloc-
ity in the xj direction, ui is the unsteady velocity perturbation
in the xi direction, �0 is the mean density, and p is the
�acoustic� pressure. The dispersion relations of Eqs. �2� and
�3� relate solely to acoustic waves and to vorticity waves,
respectively. A single wave number component �k1 ,k2� of
impinging turbulence has a phase angle � between adjacent
blades separated by a gap s given by

� = �k1 sin � + k2 cos ��s . �4�

The phase angle �rs between adjacent blades of the rth
acoustic wave generated from the cascade due to a single
wave number component of vorticity �k1 ,k2� is of the form
�rs=�−2�r�r=−� , . . . ,−1 ,0 ,1 , . . . , � �. The acoustic cir-
cumferential wave number �r of the rth acoustic wave is
therefore given by

�r =
�k1 sin � + k2 cos ��s − 2�r

s
. �5�

Equation �2� is a quadratic equation of the axial wave
number �, whose solution can be expressed in terms of �r

and � as follows:

�r
± =

M1��/a + M2�r� ± ���/a + M2�r�2 − �1 − M1
2��r

2

1 − M1
2 .

�6�

The two solutions for �r correspond to upstream-going �+�
and downstream-going �−� acoustic waves. Note that �r

takes an infinite number of values, corresponding to an infi-
nite number of cascade modes. However, Eq. �6� indicates
that only a finite number of these can modes can propagate
unattenuated. The amplitude of the cascade modes due to a
harmonic gust can be obtained by following the procedure
presented by Smith.3 For a harmonic gust of the form,

w�y1,y2,t� = w0ei�k1�y1−Wt�+k2y2�, �7�

the acoustic pressure upstream and downstream of the cas-
cade �+,−� is of the form,

p±�x1,x2,t� = �0Ww0 �
r=−�

�

Rr
±ei�k1Wt+�rx1+�rx2�, �8�

where Rr
± is the cascade response function, which is com-

pletely defined by the parameters of s /c ,� ,M ,	, and �,

where 	 is the reduced frequency �c /W.
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B. Acoustic power spectrum

The analysis of sound radiation due to an incident sinu-
soidal vortical gust can be extended to broadband turbulent
velocity distributions via the Fourier transform. It is assumed
here that the turbulence can be regarded as a “frozen gust
pattern” convecting with the free stream velocity W. This is a
reasonable assumption because turbulence velocities are gen-
erally much smaller than convection velocities and hence
change only slightly as they are convected past any airfoil in
the cascade. Equation �8� can be generalized to give the
acoustic pressure radiated from a cascade subject to the im-
pinging turbulent gust, in the form,

p±�x1,x2,t� = �0W	
−�

� 	
−�

�

ŵ̂�k1,k2� �
r=−�

�

Rr
±�k1,k2�


ei�k1Wt+�r
±x1+�rx2�dk1dk2, �9�

where ŵ̂�k1 ,k2� is the two-dimensional wave number spec-
trum of the turbulence velocity evaluated in the moving ref-
erence frame. Taking the Fourier transform of Eq. �9� with
respect to t gives

p̃T
±�x,�� = �0	

−�

�

ŵ̂�K1,k2� �
r=−�

�

Rr
±�K1,k2�ei��r

±x1+�rx2�dk2,

�10�

where p̃T
±�x ,��= �1/2��limT→�
−T

T p±�x , t�e−i�tdt and K1

=� /W. Equation �10� substituted into the linearized mo-

mentum equation gives the following expressions for the

leads to
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acoustic particle velocities in the axial and gap-wise di-
rections, respectively,

ũ1,T
± �x,��

= �0	
−�

�

ŵ̂�K1,k2� �
r=−�

�
− �r

±Rr
±�K1,k2�ei��r

±x1+�rx2�

�0�� + U1�r
± + U2�r�

dk2,

�11�

ũ2,T
± �x,��

= �0	
−�

�

ŵ̂�K1,k2� �
r=−�

�
− �rRr

±�K1,k2�ei��r
±x1+�rx2�

�0�� + U1�r
± + U2�r�

dk2.

�12�

In a fluid moving at uniform velocity, the intensity spectrum
is given by15

I±��� = lim
T→�

�

T
Re�� p̃T���

�0
+ U1ũ1,T

± ��� + U2ũ2,T
± ���



��0ũ1,T
±* ��� +

U1p̃T
*���

a2 
� . �13�

Inserting Eqs. �10�–�12� into Eq. �13�, and treating w as

a random variable, leads to
I±�x,�� = �0	
−�

� 	
−�

� �
lim
T→�

�

T
E�ŵ̂�K1,k2�ŵ̂*�K1,k2���

�
r=−�

�

�
r�=−�

�

Re�
��− �r�

±* + M1��/a + M1�r�
±* + M2�r���

�� + U1�r
± + U2�r��� + U1�r�

±* + U2�r��


Rr
±�K1,k2�Rr�

± *�K1,k2�ei����r
±−�

r�
±*�x1+��r−�r��x2� � �dk2dk2�, �14�
where E� � denotes the expected value, or ensemble average

value. Assuming that ŵ̂ is a statistically random variable, and
that the velocities at different wave number are uncorrelated,
Amiet16 shows that

lim
T→�

�

T
E�ŵ̂�K1,k2�ŵ̂*�K1,k2��� = W��k2 − k2���ww�K1,k2�� ,

�15�

where �ww�K1 ,k2�� is the turbulence velocity wave number
spectrum evaluated in the moving reference frame. Substitut-
ing Eq. �15� into Eq. �14� and performing the k2� integration
I±�x,��

= �0M	
−�

�

�ww�K1,k2� �
r=−�

�

�
r�=−�

�


Re�
��− a�r�

±* + M1�� + U1�r�
±* + U2�r���

�� + U1�r
± + U2�r��� + U1�r�

±* + U2�r��


Rr
±�K1,k2�Rr�

± *�K1,k2�ei���r
±−�

r�
±*�x1+��r−�r��x2� �dk2.

�16�

The acoustic power per unit span can be obtained by

integrating Eq. �16� in the x2 direction over a distance of Bs.
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Since the gap-wise wave numbers �r and �r� are periodic
over the distance Bs, this integral is of the form

	
0

Bs

ei��r−�r��x2dx2 = Bs�rr�, �17�

where the Kroneker delta function �rr� enables the r� sum-
mation in Eq. �16� to be eliminated. The acoustic power
spectrum per unit span can therefore be expressed as

P±��� = �0MBs	
−�

�

�ww�K1,k2� �
r=−�

�

�Rr
±�K1,k2��2



�Re�− a�r

± + M1�� + U1�r
± + U2�r��

�� + U1�r
± + U2�r�2

dk2.

�18�

The periodicity of the turbulence in the x2 direction �circum-
ferential direction� allows the transverse Fourier integrals in
k2 to be converted to a Fourier series. Since the basic spatial
period of the flow is the circumference Bs of the annulus
under consideration, the wave number in the y2 direction, as
indicated by the relationship between the �x1 ,x2� and �y1 ,y2�
coordinate systems in Fig. 1, must satisfy

k2,m =
2�m

Bs cos �
− K1 tan � , �19�

where m is the vortical mode number in the circumferential
direction. From Eq. �19�, integration over k2 at constant fre-
quency �or K1� requires that the elemental wave number
dk2,m must be replaced by

dk2,m →
2�
m

Bs cos �
, �20�

where 
m=1. Thus, the k2 integral may be written as a sum-
mation and Eq. �18� therefore becomes

P±��� =
2��0M

cos �
�

m=−�

�

�ww�K1,k2,m� �
r=−�

�

�Rr
±�K1,k2,m��2



� Re�− a�r

± + M1�� + U1�r
± + U2�r�

�� + U1�r
± + U2�r�2

. �21�

The radiated noise is therefore the sum of contributions from
an infinite number of vortical modes, each of which scatters
to produce an infinite number of acoustic modes. Equation
�21� for the spectrum of sound power is not efficient for
computation since Rr

± appears inside the double summations
of m and r. A transformation of the summation indices can
be used to move Rr

± out from the double summation into a
single summation at the expense of moving the turbulence
spectrum �ww under the double summation. Overall, this is
advantageous since �ww will normally be computed from a
simple algebraic expression, whereas Rr

± requires another in-
finite summation of the so-called “cascade-waves” and the
numerical computation of the upwash integral equation in
Ref. 3. Since the basic spatial period of the flow is Bs, the

acoustic wave number in the x2 direction must satisfy
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�l =
2�

Bs
l , �22�

where l is an arbitrary integer and denotes the order of the
acoustic mode in the x2 direction. Note that l is equivalent to
the circumferential mode index m used in duct acoustic
theory. Inserting Eqs. �19� and �22� into Eq. �5�, the mth
vortical wave number may be written in terms of the acoustic
mode number l and the cascade scattering index r as

m = l + Br . �23�

Equation �23� specifies the scattering rule for the gen-
eration of acoustic mode due to interaction of vortical modes
with the cascade. Inserting Eq. �23� into Eq. �19� gives

k2,l+Br =
2�

Bs cos �
�l + Br� − K1 tan � . �24�

By using Eq. �24�, Eq. �21� can be rearranged as

P±��� =
2��0M

cos �
�

l=−�

�

Ql
±�K1� �

r=−�

�

�ww�K1,k2,l+Br� , �25�

where Ql
± is a nondimensional modal power response func-

tion given by

Ql
±�K1� = �Rl

±�K1,k2,mod�l,B���2



� Re�− a�l

± + M1�� + U1�l
± + U2�l��

�� + U1�l
± + U2�l�2

. �26�

The function, mod�l ,B�, denotes the remainder when the first
argument is divided by the second argument. The modulus
function emerges from the form of the cascade response
function in Ref. 3, which has the property Kji

−1��l+Br�Wi

=Kji
−1��mod�l,B��Wi. If we consider only the cut-on modal

components in Eq. �25�, the infinite summation over l in
Eq. �25� becomes finite at a given frequency. In a sub-
sonic flow, W�a, propagating modes corresponding to
real values of �r

± in Eq. �6�, which occur over the range of
�l given by

M2 − �1 − M1
2�1/2

1 − M2 � � a�l �
M2 + �1 − M1

2�1/2

1 − M2 � . �27�

We denote by Lmax and Lmin the maximum and minimum
integers of the acoustic mode number l satisfying the up-
per and lower inequality of Eq. �27�, respectively. These
correspond to acoustic modes traveling in the direction of
the swirl velocity U2, and against it, respectively. Equa-
tion �25� can now be written as

P±��� =
2��0M

cos �
�

l=Lmin

Lmax

Ql
±�K1� �

r=−�

�

�ww�K1,k2,l+Br� , �28�

where the range of r is chosen to ensure convergence. The
corresponding sound power integrated over the frequency

bandwidth �L����H can therefore be written as
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�± =
2��0M

cos �
	

�L

�H

�
l=Lmin

Lmax

Ql
±�K1� �

r=−�

�

�ww�K1,k2,l+Br�d� .

�29�

The integration over � in Eq. �29� is performed numerically
in this paper.

C. Turbulence spectra

For simplicity we assume that the turbulence impinging
on the cascade is homogeneous and isotropic. A suitable
model for wave number PSD, which is consistent with these
requirements, is the Liepmann spectrum �ww�k1 ,k2 ,k3� of
the form,

�ww�k1,k2,k3� =
2w2�3

�2

�2�k1
2 + k3

2�
�1 + �2�k1

2 + k2
2 + k3

2��3 , �30�

where w2¯ is the mean square value of turbulence velocity in
the direction normal to the chord and � is the turbulence
integral length-scale. Integrating over k3 gives the two-
dimensional spectrum required in Eqs. �28� and �29� of the
form,

�ww�k1,k2� =
w2�2

4�

�1 + �2�4k1
2 + k2

2��
�1 + �2�k1

2 + k2
2��5/2 . �31�

III. CHARACTERISTICS OF THE ACOUSTIC POWER
SPECTRUM

In the following the above-developed theory to predict
the acoustic power spectrum upstream and downstream of a
two-dimensional flat-airfoil cascade interacting with homo-
geneous turbulence is now used to investigate the character-
istics of the broadband sound field. These findings will be
subsequently used to derive an expression for the acoustic
power spectrum that is valid above a certain critical fre-
quency. Unless otherwise stated, all the computations in this
section were performed with a Mach number M =0.5, a stag-

ger angle of �=0°, a turbulence intensity of w2¯ /W2=4

10−4, a turbulence integral length-scale of � /c=0.05, and
a radius of R /c=9/2� �i.e., Bs /c=9�.

A. Critical frequency

Figure 2 presents the predicted acoustic power spectrum
for the blade numbers of B=4:4 :24 plotted against nondi-
mensional frequency, � /
�±, where 
�± is the frequency
separation between successive modal cut-on frequencies
�note that 
�+=
�− for �=0°�. The spectra contain a num-
ber of peaks occurring at integer values of � /
�±. These
peaks can be divided into two categories. The first mostly
occurs in the upstream spectra, at � /
�±=nB �n
=1,2 ,3 , . . . � and are characterized by narrow bandwidth and
comparatively large amplitude. The other, smoother, peaks,
occurring at the other integer values of � /
�±, except
� /
�±=nB, have smaller amplitude and are closer together
in frequency. These peaks occur at the cut-on frequencies of
the cascade acoustic modes, defined by Eq. �27�. The cut-on

frequency of the lth cascade mode therefore occurs at
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�l± = l
�±, �32�

where l is the acoustic mode number defined by the scatter-
ing rule l=m−Br in Eq. �23� and 
�± is given by


�± =
1 − M2

M2 ± �1 − M1
2�1/2

2�a

Bs
. �33�

At frequencies below the cut-on frequency, the mode is
cutoff and decays exponentially from the cascade. In this
paper we refer to the lowest frequency of the large peak l
=B �i.e., plus sign in Eqs. �32� and �33�� as “the critical
frequency,” defined by

�c = B
�+ =
1 − M2

M2 + �1 − M1
2�1/2

2�a

s
. �34�

The significance of this frequency for cascade-
turbulence interaction noise is twofold. First, the wavelength
in the x2 direction of the cascade acoustic mode, l=B, equals
the blade spacing s. As the frequency increases above the
critical frequency, the number of cut-on acoustic modes
whose wavelength in the x2 direction are less than the blade
spacing s increases. These modes are therefore anticipated to
have relatively weak interaction with the cascade. This prop-
erty is employed in the next section in order to obtain a
modal average value for the sound power. Second, it may be
shown that at the critical frequency, all wave number com-
ponents of turbulence excite propagating cascade modes,
whereas below it, only some of the wave number compo-
nents excite cut-on modes. Consequently, we will show that
at frequencies below the critical frequency the acoustic field
radiated from the cascade is sensitive to the interaction be-
tween neighboring blades. Above the critical frequency the
acoustic field is relatively independent of interaction effects
and therefore the radiated sound power from the different
blades is additive. In order to demonstrate this phenomenon
we compute the sound power versus blade number in a fre-
quency band below the critical frequency for B=24 and in a
frequency band above it. The results are shown in Fig. 3,
nondimensionalized on �0W3c.

The results in Figs. 3�a� and 3�b� for the lower frequency
band vary nonlinearly with the blade number B. In the higher
frequency band, Figs. 3�c� and 3�d�, however, the acoustic
power is roughly proportional to B. The power at these high
frequencies for the different blade numbers is therefore ad-
ditive, suggesting that the interaction between blades is
weak. The sensitivity of broadband noise radiation to cas-
cade geometry therefore diminishes once the integration over
all k2 wave numbers is performed, as indicated in Eq. �18�.

B. Approximate expression for the acoustic power
spectrum

Here, we will derive an approximate expression for the
acoustic power spectrum of Eq. �28� based on the findings
obtained in Sec. III A. We now make the approximation in
Eq. �28� that �ww is a slowly varying function of k2 such that
the summation of �ww over r is a weak function of l and may
therefore be taken out from the summation over l. Corre-

spondingly, we make the substitution,
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�
r=−�

�

�ww�K1,k2,l+Br� �
1

B
�

m=−�

�

�ww�K1,k2,m� , �35�

such that the dependence on l can now be dropped. Equa-
tions �24� and �35� suggest that this is a valid approximation
at high frequencies and integral length-scales small com-
pared to the blade spacing, i.e., � /s�1. Insertion of Eq. �35�
into Eq. �28� leads to
J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006
P±��� �
2��0M

B cos �
�

m=−�

�

�ww�K1,k2,m� �
l=Lmin

Lmax

Ql
±�K1�

for � � �c. �36�

This procedure has the effect of decoupling the turbulence
wave number spectrum from the cascade response function.
In order to verify the validity of Eq. �36�, the power spec-
trum for B=24 and � /c=0.1 are computed using the exact
expression of Eq. �28� and the approximate expression of

FIG. 2. Predicted spectrum of acoustic
PSD: �a� B=4, �b� B=8, �c� B=12, �d�
B=16, �e� B=20, and �f� B=24 where
lower spectrum denotes the upstream
spectrum and upper spectrum denotes
the downstream spectrum.
Eq. �36�. The error between the two predictions, calcu-

Cheong et al.: Turbulence-cascade interaction noise 113



lated from �= ��P±���− P̃±���� /P±���� where the tilde de-
notes the approximate prediction, is plotted in Fig. 4. The
error between the exact and approximate solutions is neg-
ligible at all frequencies, especially above the critical fre-
quency where typical error is less than 1%. Figure 4 sug-
gests that the error associated with Eq. �36� is negligible
even at frequencies below the critical frequency. The re-
quirement that the frequency range is above the critical
frequency for Eq. �36� to be valid may therefore be re-
laxed.

We now introduce a further simplification to the sound
power expression that is only valid at frequencies above the
critical frequency. The basis for the technique involves re-
placing the frequency-dependence of Ql�K1� in Eq. �36� by
its high frequency asymptotic dependence. In order to ascer-
tain this dependence, the function �l=Lmin

Lmax Ql
±�K1� appearing in

Eq. �28� is computed for different blade numbers. The results
are plotted in Fig. 5.

Also shown in these figures are the curves proportional
to B2 /K1, which provide a good fit to the exact behaviors at
frequencies greater than their respective critical frequencies.
Based on this goodness of fit, we write the high frequency

FIG. 3. Predicted band acoustic power with various blade number: �a� a
� ��c�B=24.
response function of the cascade in the form,
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�
l=Lmin

Lmax

Ql
±�K1� �

Bs��1 − M1
2�1/2

�a�1 − M2�
aF±�M,��
W	2�s/c�2 , �37�

where F±�M ,�� is a nondimensional function that must only
depend on M and �. The argument leading to this formula-
tion is presented in Appendix A.

The first term on the right-hand side of Eq. �37�, as
demonstrated by Eq. �27�, approximates the number of
cut-on modes. The second term therefore specifies the modal
averaged acoustic power response, and is introduced such
that the final form of Eq. �37� is proportional to B2 /K1 while
retaining the nondimensionality. Note that the chord length c
cancels in the term, 	2�s /c�2. Insertion of Eq. �37� into Eq.
�36� gives an approximation to the power spectral density of
the form,

P±��� � F±�M,��
2�0MW�1 − M1

2�1/2

�s cos ��1 − M2� �
m=−�

�

�ww�K1,k2,m�

for � � �c. �38�

Converting the k2,m summation into k2 integration by the use

� on lower bandwidth, �� ��c�B=24; �c� and �d� on higher bandwidth, �
nd �b
of the inverse relation of Eq. �20� leads to
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P±��� � F±�M,��
B�0M�1 − M1

2�1/2

��1 − M2�
�ww�K1�

K1

for � � �c, �39�

where the turbulence one-dimensional �frequency� spectrum
is given by �ww�K1�=
−�

� �ww�K1 ,k2�dk2. This formulation
makes explicit that the acoustic power above the critical fre-
quency is proportional to blade number and independent of
the airfoil chord and solidity. In order to verify these depen-
dencies from numerical predictions, we define a normalized
acoustic power over the bandwidth ��c�B=4n��

� ��c�B=4n+4 in Fig. 2, given by

FIG. 4. Calculated error between the exact and approximate predictions for

B=24 and �=0.1. Error is defined as �= ��P±���− P̃±���� /P±���� where a
tilde denotes the prediction using the approximate equation, Eq. �36�: �a�
upstream and �b� downstream.
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�̄n
± =


��c�B=4n

��c�B=4n+4P±���d�


��c�B=4n

��c�B=4n+4�ww�K1�/K1d�
. �40�

If the approximate solution of Eq. �39� is valid, then �̄n�B
for B=4, . . . ,4n for the same values of M and �, and the

resultant curve of �̄n collapses onto a single curve propor-
tional to the blade number. Equation �40� was computed us-
ing the same parameters used in Fig. 2, except with a solidity
of s /c=1, i.e., c=9/B. In this computation, acoustic power
was computed using the exact expression of Eq. �29�. The
result is plotted in Fig. 6. The normalized power is shown to
be a function only of B, thereby confirming the validity of
the approximate expression of Eq. �39� above the critical
frequency.

The approximate power expression of Eq. �39� predicts
explicitly that the acoustic power spectrum falls off as
�ww�K1� /K1. The form of this function is obtained by inte-
grating Eq. �31� over k2 to give

�ww�K1�
K1

=
w2�

2�

�1 + 3�2K1
2�

K1�1 + �2K1
2�2 , �41�

which falls off as �−3 as �� /W�=�K1�→�. Inserting Eq.
�41� into Eq. �39� gives the spectrum of sound power per unit
span at frequencies above the critical frequency as

P±��� � F±�M,��
B�0�w2W

2�2�

M�1 − M1
2�1/2

�1 − M2�
�1 + 3�2K1

2�
�1 + �2K1

2�2

for �c � � . �42�

C. Characteristics of F±
„M ,�…

In order to complete the approximate expression of Eq.
�42�, the cascade response function F±�M ,�� defined by Eq.
�37� must be known. In order to compute the dependence of
F±�M ,�� on M and �, the acoustic power in frequency bands
above critical frequency for B=4 were computed exactly us-
ing Eq. �28� for various values of M and �, and their results
equated to Eq. �42� to obtain F±�M ,��. The function
F±�M ,�� is plotted in Fig. 7 over the range of values: M
=0.2:0.1:0.8 and �=15° :15° :75°. Note that the values of
F± computed from other values of B are within 0.1% for F+

and within 1% for F−. The data were used to calculate the
coefficients am,n

± in a polynomial of least-squares fit, of the

form F̂±�M ,��=�m=0
2 �n=0

4 am,n
± �nMm. The coefficients are

tabulated in Appendix B. This function is plotted as the con-
tinuous curves in Fig. 7.

The accuracy of the approximate power expression of
Eq. �42�, combined with the results for F±�M ,�� in Fig. 7,
was verified by using it to compute the acoustic power spec-
tral density of the exact results presented in Fig. 2. The re-
sults are shown in Fig. 8. Excellent agreement is obtained at
frequencies above the critical frequencies. Below the critical

frequency, however, agreement is poor, as expected.
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IV. COMPARISON WITH MEASURED DATA

This section presents a comparison between the predic-
tion and measured data for turbulence-cascade interaction
noise. The spectra are expressed in decibels as a power level
�PWL� defined as

PWL± = 10 log10�2�
±

R

10−12 
 , �43�

where the factor of 2 is used to convert from a two-sided
spectrum to a one-sided spectrum and 
R denotes the width
of the cascade in the spanwise direction.

Figure 9 shows a comparison between the sound power
spectra predicted using the exact expression of Eq. �28�, the
approximate formulation of Eq. �42�, and the experimental
data obtained from a model test in a wind tunnel at
NASA-Lewis.11,13 The noise below 300 Hz was reported to
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be due to sources other than the fan. The stator is modeled by
the two-dimensional geometry of Fig. 1, with a mean flow
speed corresponding to that at the tip of the stator. The com-
putations were performed for M =0.5, B=45, s /c=0.8, �

=30°, w2¯ /W2=4
10−4, and � /R=0.035 at a radius of R
=0.80 m. The calculation was performed with a frequency
resolution of 
� /W=� /40 m−1 and for simplicity we as-
sume that 
R=R /2. The turbulence length-scale and inten-
sity were adjusted to provide a best match to the measured
data.

Although the computation was carried out using two-
dimensional theory, and the turbulence properties are repre-
sented simply by a single value of intensity and length scale,
agreement overall is good. In particular, the rate of high-
frequency roll-off closely matches that of the experimental
data. Similar levels of agreement were obtained by
Hanson11,13 using three-dimensional theory with approxi-

FIG. 5. Modal sum, �l=Lmin

Lmax Ql
±�K1�, for different blade

numbers and asymptotic lines. �—� Prediction results of
�l=Lmin

Lmax Ql
±�K1� from Eq. �37� and �- - -� lines of const


B2 /K1: �a� upstream and �b� downstream.
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mately the same values of � and w2¯ . The use of two-
dimensional theory to give comparable results with the three-
dimensional theory suggests that three-dimensional effects,
such as the contribution from oblique gusts, are compara-
tively weak.

FIG. 6. Normalized characteristic band acoustic power: �a� upstream and �b�
downstream.

FIG. 7. The dependence of the function F± on Mach numbers and stagger
angles for B=4. Symbols denote the calculation and lines denote a poly-

nominal of least-squares fit.
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V. PARAMETRIC STUDY

For the parametric study presented in the following, a
baseline case is chosen to correspond to that in Sec. IV, ex-
cept that the vane count was changed to 30. Vane count is a
major consideration for tonal noise since the use of large
vane numbers leads to cutoff of the first blade passing fre-
quency. In designing stators, there is usually a preferred so-
lidity for aerodynamic efficiency purpose, but some variabil-
ity in the vane count is permitted.

Figure 10 shows the variation of power levels, in one-
third octave band frequencies, for B=15 ,30, and 60 while
keeping solidity, and hence the wetted area, constant. The
solid lines represent the predictions obtained using the ap-
proximate expression of Eq. �42�. Excellent agreement be-
tween the exact and approximate predictions is observed at
frequencies above the critical frequencies of 660.9,1321.8,
and 2643.6 Hz for B=30,45, and 60, respectively. The
power above the critical frequency is observed to be propor-
tional to B, as predicted explicitly by Eq. �42�. The poor
agreement between the exact and approximate calculations
below the critical frequencies is due to interactions between
neighboring vanes. The center frequency of the “hump” in
the spectra is also observed to be proportional to B. Figure
10 suggests that below the critical frequency there exists a
saturation blade number, above which the overall acoustic
power ceases to increase.

Figure 11 shows the power spectrum for the stagger
angles of 15° and 45° for B=30. Again, excellent agreement
is obtained between the exact and approximate predictions
above the critical frequency. Due to convection effects, the
high frequency upstream power spectrum increases with in-
creasing stagger angle and decreases for the downstream
power spectrum. However, the effect of stagger angle on the
downstream spectrum is generally small, particularly at high
frequencies.

Figure 12 shows the variation of power spectra for the
three gap-chord ratios of s /c=0.4, 0.8, and 1.2 for B=30 and
�=30°. The approximate expression of Eq. �42� predicts that
the sound power is independent of gap-chord ratio �or solid-
ity� above the critical frequency, as confirmed by the exact
calculation. Chord length therefore has little effect on sound
radiation, especially at high frequencies.

In order to investigate the effect of flow speed Mach
number on broadband noise generation, acoustic power spec-
tra were computed for Mach numbers of M =0.4, 0.5, and 0.6
using the exact and approximate expressions. The results are
plotted in Fig. 13. Again, close agreement is obtained above
the critical frequency.

A similar parametric study was carried out by
Hanson11,13 over a range of mean-flow and cascade param-
eters similar to those above. Overall trends with the various
parameters obtained here closely match those predicted by
Hanson,11,13 using a three-dimensional theory. The signifi-

cant difference in our study is that these trends are predicted
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explicitly by the approximate high frequency result of Eq.
�42�.

VI. CONCLUSION

The power spectrum of the upstream and downstream

FIG. 8. Comparison of power spectral density between the exact and appro
�b� B=8, �c� B=12, �d� B=16, �e� B=20, and �f� B=24.
sound field due to an isotropic frozen turbulent gust imping-
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ing on a cascade of flat-plate airfoils has been computed. The
theory has been developed using an analytic formulation of
the two-dimensional response by a cascade of flat plates de-
rived from the theory due to Smith3 and the LINSUB computer
code by Whitehead.4 It is found that the acoustic power spec-

e predictions �exact solutions �—�, approximate solutions �- - -��: �a� B=4,
ximat
trum can be categorized into two distinct frequency regions,
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which are separated by a critical frequency. This critical fre-
quency corresponds to the cutoff frequency of the mode l
=B, i.e., when the gap-wise wavelength equals the blade
space. Below this frequency, only some spectral components
of turbulence excite cuton acoustic modes. Above the critical
frequency, all wave number components of turbulence con-
tribute to cut-on acoustic modes and interaction between
acoustic waves radiated from each blade is weak. The blades
therefore radiate incoherently and their sound powers are ad-
ditive. Based on this finding, a simplified, cascade-response/
turbulence-spectrum decoupled expression has been derived
for the acoustic power spectrum at frequencies above the
critical frequency. This expression explicitly predicts that the
acoustic power above the critical frequency is proportional to
the blade number, independent of the blade chord, and varies
with frequencies as �ww�� /W� /�, where �ww�� /W� is the
wave number spectrum of the turbulence velocity. The
theory was utilized to perform a parametric study which
shows that overall predictions and trend closely match those
predicted by Hanson11,13 obtained using a three-dimensional
theory. This result suggests that three-dimensional effects
such as the contribution to the power from oblique gusts are
comparatively weak. Through the comparison between ex-
perimental data and predictions using the exact and approxi-
mated expressions, the approximate expression is shown to
provide a highly efficient means of computing the power
spectrum at high frequencies above the critical frequency,
which for realistic engine parameters, corresponds to about
1 kHz.

Future work is aimed at extending the approximate for-
mula to the prediction of broadband noise due to three-
dimensional excitation by inhomogeneous turbulence im-

FIG. 9. Comparison of theoretical prediction with measured noise spectra
for model data.
pinging on a rectilinear cascade of flat-plate airfoils.
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Nomenclature

FIG. 10. Variation of acoustic power spectrum with blade number, B; solid
lines denote approximate predictions and the other lines exact predictions;
vertical line “�” denotes the location of critical frequency: �a� upstream and
�b� downstream.
a � sound speed
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B � the number of airfoils in a cascade
c � airfoil chord length
l � acoustic mode number in the gap-wise

direction
m � vortical mode number in the gap-wise

direction
M � Mach number of mean-flow

M1 � Mach number in the axial direction, M cos �
M2 � Mach number in the gap-wise direction,

M sin �

FIG. 11. Variation of acoustic power spectrum with stagger angle, �; solid
lines denote approximate predictions and the other lines exact predictions;
vertical line “�” denotes the location of critical frequency: �a� upstream and
�b� downstream.
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ki � wave number of ingested turbulence gust in
Cartesian coordinate system

K1 � � /W
p � pressure perturbation
r � scattering index for a cascade of airfoils
R � radius or cascade response function
s � blade spacing or entropy
t � time

ui � velocity perturbation in xi direction
Ui � mean velocity in xi direction

FIG. 12. Variation of acoustic power spectrum with gap-chord ratio s /c �or
reciprocal of solidity�; solid lines denote approximate predictions and the
other lines exact predictions; vertical line “�” denotes the location of critical
frequency: �a� upstream and �b� downstream.
w � upwash velocity perturbation
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W � mean-flow speed, �U1
2+U2

2

xi � Cartesian duct coordinate system, Fig. 1
yi � Cartesian cascade-fixed coordinate system,

Fig. 1
z � coordinate measured in direction of airfoil

chord, Fig. 1
� � wave number of the generated disturbance

in the axial direction
� � wave number of the generated disturbance

in the gap-wise direction
� � vortex strength

FIG. 13. Variation of acoustic power spectrum with Mach number, M; solid
lines denote approximate predictions and the other lines exact predictions;
vertical line “�” denotes the location of critical frequency: �a� upstream and
�b� downstream.
�ww � turbulence spectrum
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� � stagger angle, tan−1�U2 /U1�
	 � reduced frequency �c /W
� � density perturbation

�0 � mean-stream density
� � interblade phase angle
� � angular frequency

PSD � power spectral density

Superscripts
+ � upstream running acoustic wave
− � downstream running acoustic wave
∧ � convected vorticity wave

APPENDIX A: ARGUMENT FOR THE ANALYTIC FORM
OF EQ. „37…

This appendix presents the reasoning for Eq. �37�, which
is reproduced in the following, for the modal power response
function summed over all propagating modes,

�
l=Lmin

Lmax

Ql
±�K1� �

Bs��1 − M1
2�1/2

�a�1 − M2�
aF±�M,��
W	2�s/c�2 .

The form of the right-hand side of this equation may be
derived from the following observations:

i. From Sec. III A, the band acoustic power above
the critical frequency is proportional to B.

ii. From Eq. �35�, the contribution of the wave num-
ber spectrum of the turbulence to the acoustic
power varies as B−1.

iii. Observations i and ii suggest that the power term,
�Ql

±�K1�, in Eq. �28� must be proportional to B2.
iv. From Fig. 5, �Ql

±�K1� is inversely proportional to
K1.

Based on i–iv, dimensional analysis was used to derive Eq.
�37� for �Ql

±�K1� to give the desired dependence of B2 /K1.
The first term on the right-hand side of Eq. �37� represents
the number of cut-on modes and is proportional to K1 �Bs
=2�R, i.e., constant�. The second term must therefore be
proportional to B2 /K1

2. This second term there has the inter-
pretation as the modal averaged cascade response function of
Smith in Ref. 3, which is uniquely defined by the gap-chord
ratio s /c, stagger angle �, Mach number M, and reduced
frequency 	. Note that, unlike for harmonic gusts, the phase
angle � has no physical meaning for turbulent gusts and can
therefore be neglected as an input parameter in the dimen-
sional analysis. We assume the form, �s /c��	�F±�M ,�� for
this second term. First, we must have �=−2 and �=−2 in
order to give the required frequency dependence of K1

−2 and
B dependence of B2 identified in iii and iv, since s−1 is pro-
portional to B �B=2�R /s�. The precise dependence on M
and � cannot be determined from the observations i–iv, and
so their dependence is incorporated into the function
F±�M ,��. The term of a /W in Eq. �37� is introduced to can-
cel the same term in the first term on the right-hand side.

This procedure leads to the final form of Eq. �37�.
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